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Abstract
Classical voting rules assume that ballots are complete preference orders over candidates. 
However, when the number of candidates is large enough, it is too costly to ask the vot-
ers to rank all candidates. We suggest to fix a rank k, to ask all voters to specify their best 
k candidates, and then to consider “top-k approximations” of rules, which take only into 
account the top-k candidates of each ballot. The questions are then: Are these k-truncated 
approximations good predictors of the approximated rule? For which values of k and under 
which assumptions can we expect to output the correct winner with high probability? For 
different voting rules, we study these questions theoretically, by giving tight approxima-
tion ratios, and empirically, based on randomly generated profiles and on real data. We 
consider two measures of the quality of the approximation: the probability of selecting the 
same winner as the original rule, and the score ratio. We do a worst-case study (for the lat-
ter measure only), and for both measures, an average-case study and a study from real data 
sets.

Keywords  Voting rules · Truncated ballots · Approximations

1  Introduction

Voting consists of aggregating voters’ preferences over a set of candidates in order to deter-
mine a consensus decision or recommendation.

A voting rule maps a profile into a collectively chosen candidate. The precise definition 
of a profile varies across voting rules. While some rules start from approval profiles (each 
vote being a subset of candidates) and other start from quantitative profiles (each vote asso-
ciating a numerical score with each candidate), most rules that have been studied in the 
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literature start from ordinal profiles, where each vote is a linear order, i.e., a ranking, over 
candidates. In this paper we focus on the latter family of rules.

Ranking candidates has many advantages: it allows voter to express much more infor-
mation than with an approval ballot, and it avoids the well-known issue of interpersonal 
comparison of preferences that makes quantitative profiles difficult to work with. However, 
it comes with one difficulty: requiring a voter to provide a complete ranking over the whole 
set of candidates can be difficult and costly in terms of time and cognitive effort. Indeed 
voters can find it difficult and/or time-consuming to rank all candidates running up for elec-
tion when the number of candidates is more than a very small number (such as 4 or 5). A 
way to palliate this problem, already argued in a number of works, consists in asking voters 
to report truncated ballots: each voters reports only their top-k candidates, for some (small) 
fixed value of k.

In practice, voting systems often permit voters to report truncated ballots. For example, 
in the 2002 Irish Election for Meath constituency (full ballot data are available on [25]), 
most voters chose to rank between 3 and 5 of the 14 candidates, with only 3.89% of voters 
submitting a full ranking (see Fig. 1).

However, this raises the issue of how common voting rules should be adapted to top-k 
ballots. We generalize the definition of a voting rule such that it takes truncated ballots as 
input. We instantiate this definition on several common voting rules. For each of them the 
variant with truncated ballots as input can be seen either as a genuinely novel rule, or as an 
approximation of the original rule. We mostly take the second view and then ask, are these 
approximations good predictors of the original rule?

We answer this question by considering two measures of the quality of the approxi-
mation: (1) the probability of selecting the same winner as the original rule, and (2) the 
worst-case score ratio. Which one of these two measures is more relevant depends on the 
application domain. In epistemic social choice (see for instance part 2 of [11]), the final 
aim is to uncover the ground truth, therefore measure (1) is more relevant: if the voting rule 
is a maximum likelihood estimator for the chosen voting rule, it makes sense to maximize 
the probability that the truncated approximation will find the same outcome of the voting 
rule. In classical social choice where voters have hidden cardinal preferences, and where 
the score function defining the rule is considered a proxy for their utilities, then the global 

Fig. 1   In the 2002 Irish election for meath constituency, most of the voters rank only 3 to 5 candidates out 
of 14
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score of an alternative can be considered a proxy for the social welfare of this alternative; 
the worst-case ratio between the score of the outcome of the initial voting rule and the 
score of the outcome of the approximation is then a classical “price of anarchy” type of 
measure, which would be called here price of truncation. We do a theoretical analysis only 
for measure (1). For both measures (1) and (2) we make an empirical study, based on ran-
domly generated profiles and on real-world data. Our findings are that for several common 
voting rules, both for randomly generated profiles and real data, a very small k suffices.

Our interpretation of top-k ballots is epistemic: the central authority in charge of collect-
ing the votes and computing the outcome ignores the voters’ preferences below the top-k 
candidates of each voter, and has to cope with it as much as possible. Voters may very well 
have a complete preference order in their head (although it does not need to be the case), 
but they will simply not be asked to report it.

Section 3 gives some background on social choice and voting rules. Section 4 defines 
top-k approximations of different voting rules. Section 5 analyses empirically the probabil-
ity that approximate rules select the true winner. Finally, Sect. 6 analyses score distortion, 
theoretically and empirically.

2 � Related work

Voting with truncated ballots is a form of voting with incomplete knowledge (a background 
on this more general topic can be found in [5]). Existing work on truncated ballots can be 
classified into two classes according to the type of interaction with the voters.

2.1 � Interactive elicitation with top‑k ballots

An interactive elicitation protocol asks voters to expand their truncated ballots in an incre-
mental way, until the outcome of the vote is eventually determined. This line of research 
starts with Kalech et al. [18] who start by top-1 ballots, then top-2, etc., until there is suf-
ficient information for knowing the winner. Lu and Boutilier [22, 23] propose an incre-
mental elicitation process using minimax regret to predict the correct winner given partial 
information. A more general incremental elicitation framework, with more types of elicita-
tion questions, is cost-effective elicitation [32]. Naamani Dery et al. [10] present two elici-
tation algorithms for finding a winner with little communication between voters.

2.2 � Non‑interactive elicitation with top‑k ballots

Here the central authority elicits the top-k ballots at once, for a fixed value of k, and outputs 
a winner without requiring voters to provide extra information.

A possibility consists in computing possible winners given these truncated ballots: this 
is the path followed by Baumeister et al. [2], who also consider double-truncated ballots 
where voters rank some of their top and bottom candidates. Even if outputting possible 
winners can also be seen as a way of generalizing the definition of a voting rule to trun-
cated ballots, the obtained rule tends to be very irresolute when the size of the partial bal-
lots is small.

Another possibility – which is the one we follow – consists in generalizing the definition 
of a voting rule so that it takes truncated ballots as input. A few works go along this line; 
we discuss them now.
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Bentert and Skowron [3] focus on the top-k approximations of two voting rules: Borda 
and maximin. They measure the extent to which these top-k rules approximate the origi-
nal Borda (resp. maximin) rule by the worst-case ratio between the Borda (resp. maximin) 
scores, with respect to the original profile, of the winner of the original rule and the win-
ner of the top-k variant. Also, they identify the top-k rules that best approximate positional 
scoring rules. Their theoretical analysis is complemented by numerical experiments using 
profiles generated from different distributions over preferences. More details will be given 
in Sect.6.

Oren et al. [27] analyze top-k voting by assessing the values of k needed to ensure the 
true winner is found with high probability for specific preference distributions. Filmus and 
Oren [13] study the performance of top-k voting under the impartial culture distribution for 
the Borda, Harmonic and Copeland rules. They assess the values of k needed to find the 
true winner with high probability, and more precisely, they show that for Borda and the 
Harmonic (resp. Copeland) voting, a lower bound of k = �(m) (resp. k = �

�
m√
logm

�
 ) is 

needed for n sufficiently large relative to m (where n is the number of voters and m is the 
number of candidates). Their theoretical analysis is complemented by numerical experi-
ments that show that under the impartial culture, in the setting where m = 20 and n = 2000 , 
Harmonic rule gives the best results where k = 15 out of 20 is sufficient to determine the 
winner, while for Copeland and Borda the whole profile is needed to ensure the winner. 
Our Sect. 5 can be seen as a continuation of [13]. We go further on several points: we con-
sider more voting rules; beyond impartial culture, we consider a large scope of distribu-
tions; we study score distortion; and we include experiments using real-world data sets.

Ayadi et al. [1] evaluate the extent to which STV with top-k ballots approximates STV 
with full information. They show that for small k, top-k ballots are enough to identify the 
correct winner quite frequently, especially for data taken from real elections. Finally, the 
recognition of singled-peaked top-k profiles is studied in [20] while the computational 
issues of manipulating rules with top-k profiles is addressed in [26].

Terzopoulou and Endriss [30] give a thorough axiomatic study of different versions of 
the Borda rule for truncated ballots. Beyond single-winner rules, top-k approximations also 
make sense for multi-winner rules. Skowron et al. [29] use top-k voting as a way to approx-
imate some multiwinner rules.

3 � Preliminaries

An election is a triple E = ⟨N,A,P⟩ where: N = {1, ..., n} is the set of voters, A is the set 
of candidates, with |A| = m ; and P = (≻1, ...,≻n) is the preference profile of voters in N, 
where for each i, ≻i∈ P is a linear order over A. Pm is the set of all profiles over m alterna-
tives (for varying n). For any a, b ∈ A , a ≻i b means that voter i prefers a to b.

Given a profile P, NP(a, b) = #
{
i, a ≻i b

}
 is the number of voters who prefer a to b in 

P. The majority graph M(P) is the graph whose set of vertices is A and in which for all 
a, b ∈ A , there is a directed edge from a to b (denoted by a → b ) in M(P) if Np(a, b) >

n

2
.

Given a profile P, the weighted majority graph associated with P is the graph MW(P) 
whose set of vertices is A and in which for all a, b ∈ A , there is a directed edge from a to 
b weighted by the number of voters who prefer a to b in P. Since the votes in P are linear 
orders, knowing MW(P) is equivalent to knowing the pairwise majority matrix defined by: 
for all a, b ∈ A , ScoreP(a, b) = NP(a, b) − NP(b, a)
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A resolute voting rule is a function f ∶ E → A . Resolute rules are typically obtained 
from composing an irresolute rule (mapping an election into an non-empty subset of can-
didates, called co-winners) with a tie-breaking mechanism. For most of the rules below we 
define the irresolute version.

Positional scoring rules: A positional scoring rule (PSR) f � is defined by a non-neg-
ative vector � =

(
s1, ..., sm

)
 such that s1 ≥ ... ≥ sm and s1 > 0 . Each candidate receives sj 

points from each voter i who ranks her in the jth position, and the score of a candidate is 
the total number of points she receives from all voters i.e. S(x) =

∑n

i=1
sj . The winner is the 

candidate with highest total score. Examples of scoring rules are the Borda and Harmonic 
rules, with �Borda = (m − 1,m − 2,… , 0) and �Harmonic = (1,

1

2
,… ,

1

m
).

Single Transferable Vote (STV): Given a prespecified linear order ⊳ over the candidates 
(needed for tie-breaking), the STV⊳ rule proceeds in rounds (up to m − 1 ): in each round 
we compute, for each candidate, the number of voters who rank it first. The candidate with 
the smallest number of voters ranking them first is eliminated and the votes who supported 
it now support their preferred candidate among those that remain. If there is a tie between 
two or more candidates, the eliminated candidate is the one, among those with the smallest 
number of votes, that has the lowest priority according to ⊳ . The last remaining alternative 
is the STV winner.

Pairwise comparison rules: They are defined from the majority graph or from the 
weighted majority graph induced from the profile. We will study three of them:

–	 The Copeland rule outputs the candidate maximizing the Copeland score, where the 
Copeland score of x is the number of candidates y with x → y in M(P), plus half the 
number of candidates y ≠ x with no edge between x and y in M(P). The winner is the 
candidate with highest Copeland score.

–	 The Ranked Pairs (RP) rule proceeds by ranking all pairs of candidates (x, y) according 
to NP(x, y) (using tie-breaking when necessary); starting from an empty graph over A, 
it then considers all pairs in the described order and includes a pair in the graph if and 
only if it does not create a cycle in it. At the end of the process, the graph is a complete 
ranking, whose top element is the winner (see Section 4.5.3 of [14] for a formal defini-
tion).

–	 The maximin rule outputs the candidates that maximize 

For the experiments using randomly generated profiles, we use the Mal-
lows �-model [24]. It is a (realistic) family of distributions over rankings, para-
metrized by a modal or reference ranking � and a dispersion parameter � ∈ [0, 1] : 
P(r;�,�) =

1

Z
�d(r,�) , where r is any ranking, d is the Kendall tau distance and 

Z =
∑

r� �
d(r�,�) = 1 ⋅ (1 + �) ⋅

�
1 + � + �2

�
⋅ ... ⋅

�
1 + ... + �m−1

�
 is a normalization con-

stant. With small values of � , the mass is concentrated around � , while � = 1 gives the 
uniform distribution Impartial Culture (IC), where all profiles are equiprobable.

To overcome the unimodal nature of Mallows � model, mixtures of Mallows will be 
considered. Let p be a positive integer, a mixture model consists of p Mallows models 
with a probability distribution over them. Formally, given reference rankings �1,… , �p , 
dispersion parameters �1,… ,�p , and mixing coefficients (discrete probability distribution) 
�1,… , �p where each �i , 1 ≤ i ≤ p is between 0 and 1, and 

∑p

i=1
�p = 1 ; we generate rank-

ings with d = (�, ��) from the reference ranking that is proportional to �d
i
 . We select rank-

ings from the p models according to the given probability distribution [21, 24].

Sm(x) = minx∈A(y≠x)
(
NP(x, y)

)
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4 � Approximating voting rules from truncated ballots

Given k ∈ {1, ...,m − 1} , a top-k election is a triple E� = ⟨N,A,R⟩ where N and A are as 
before, and R = (≻k

1
, ...,≻k

n
) , where each ≻k

i
 is a ranking of k out of m candidates in A. R 

is called a top-k profile. If P is a complete profile, ≻k
i
 is the top-k truncation of ≻i (i.e., the 

best k candidates, ranked as in ≻i ), and Pk = (≻k
1
, ...,≻k

n
) is the top-k-profile induced from 

P and k. A top-k (resolute) voting rule is a function fk that maps each top-k election E′ to a 
candidate in A. We sometimes apply a top-k rule to a complete profile, with fk(P) = fk(Pk) . 
We now define several top-k rules.

4.1 � Positional scoring rules

We first generalize the definition of a positional scoring rule to top-k ballots.

Definition 1  A top-k PSR f �k is defined by a scoring vector � =
(
s1,… , sk, s

∗
)
 such that 

s1 ≥ s2 ≥ ... ≥ sk ≥ sk+1 ≥ s∗ ≥ 0 and s1 > s∗ . Each candidate in a top-k vote receives sj 
points from each voter i who ranks her in the jth position. A non-ranked candidate gets s∗ 
points. The winner is the candidate with highest total score.

The reason why we require s∗ ∈ [0, sk+1] is that a candidate that is not in the top-k is in 
the best case in position k + 1 (and would thus get sk+1 points if its position were known) 
and in the worst case in position m (and would thus get sm = 0 point if its position were 
known).

When starting from a specific PSR for complete ballots, defined by scoring vector 
� =

(
s1,… , sm

)
 , two choices of s∗ particularly make sense:

–	 zero score: s∗ = 0

–	 average score: s∗ = 1

m−k

(
sk+1 +…+ sm

)

We denote the corresponding approximate rules as f 0
k
 and f av

k
 . Bordaav

k
 is known under the 

name average score modified Borda Count [8, 16], while Borda0
k
 is known under the name 

modified Borda Count [12]).

Example 1  Let m = 5 and k = 2 . The scoring vectors for Borda0
2
 and Bordaav

2
 are: 

�Borda0
2
= (4, 3, 0, 0, 0) and �Bordaav

2
= (4, 3, 1, 1, 1) , respectively.

The scoring vectors for Harmonic0
2
 and Harmonicav

2
 are: �Harmonic0

2
= (1,

1

2
, 0, 0, 0) and 

�Harmonicav
2
= (1,

1

2
, 0.26, 0.26, 0.26) , respectively.

Young [31] characterized positional scoring rules by these four properties, which we 
describe informally (for resolute rules):

–	 Neutrality: all candidates are treated equally.
–	 Anonymity: all voters are treated equally.
–	 Reinforcement: if P and Q are two profiles (on disjoint electorates) and x is the winner 

for P and the winner for Q, then it is also the winner for P ∪ Q.
–	 Continuity: if P and Q are two profiles and x is the winner for P but not for Q, adding 

sufficiently many votes of P to Q leads to elect x.
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f is a PSR if and only if it satisfies neutrality, anonymity, reinforcement and continuity [31]. 
These four properties still make sense for truncated ballots.

We now define a property of standard voting rules (with complete profiles as input): a 
standard voting rule is top-k-only if for any two complete profiles P,P′ , if Pk = P�

k
 , then 

f (P) = f (P�) . The special case for k = 1 is known under the name tops-only.

Lemma 1  A standard positional scoring rule f associated with score vector is top-k-only if 
and only if sk+1 = … = sm.

Proof  The ‘if’ direction is obvious.
For the ‘only if’ direction, suppose the equality is not satisfied: then sk+1 > sm . We 

construct two profiles P, P′ such that Pk = P�
k
 and f (P) ≠ f (P�) . Let the candidates 

be {x1,… , xm−1, y, z} . Let � be some integer, which we will specify later. P contains 
(2� + 1).(m − 2) votes:

–	 For each i = 1,…m − 2 , � votes yzxi … xi+1[m−2],… xi−1[m−2] , where [m − 2] mean 
“modulo m − 2”;

–	 For each i = 1,…m − 2 , � votes zyxi … xi+1[m−2],… xi−1[m−2]
–	 For each i = 1,…m − 2 , one vote xi … xi+k−1[m−2]yxi+k[m−2] … xi−1[m−2]z.

When � grows, for each i = 1,…m − 2 , S(xi) = 2�(s3 +…+ sm) + s1 +…+ sk−1 + sk+1 +…+ sm while 
S(y) = �(m − 2)(s1 + s2) + (m − 2)sk+1 and S(y) = �(m − 2)(s1 + s2) + (m − 2)sm . Now, 
because s1 > sm , we have s1 + s2 > 2𝛼

s3+…+sm

m
 , which implies that for � large enough, S(y) 

and S(z) are both larger than S(xi) for all i. Finally, S(y) > S(z) because of our assumption 
sk+1 > sm . Therefore, the winner in P is y.

Now, let P’ the profile identical to P but exchanging the positions of y and z. We have 
Pk = P�

k
 and f (P�) = z ≠ f (P) = y . 	�  ◻

Now it is not difficult to generalize Young’s result to top-k PSR1.

Theorem 1  A top-k voting rule is a top-k PSR if and only if it satisfies neutrality, anonym-
ity, reinforcement, and continuity.

Proof  The left-to-right direction is obvious. For the right-to-left direction: assume fk is 
a top-k rule satisfying neutrality, anonymity, reinforcement, and continuity. Let f be the 
standard voting rule defined by f (P) = fk(Pk) . Clearly, f also satisfies neutrality, anonymity, 
reinforcement, and continuity, and due to Young’s characterization result, f is a PSR, asso-
ciated with some vector (s1,… , sm) . Because f is also top-k-only, using Lemma 1 we have 
sk+1 = … = sm , therefore, fk is a top-k-PSR. 	�  ◻

4.2 � Rules based on pairwise comparisons

Given a truncated ballot ≻k
i
 and two candidates a, b ∈ A , we say that a dominates b in ≻k

i
 , 

denoted by a >k
i
b , if one of these two conditions holds: 

1  A more general version of this result was proven by Kruger and Terzopoulou [19].
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1.	 a and b are listed in ≻k
i
 and a ≻k

i
b , or

2.	 a is listed in ≻k
i
 and b is not.

For instance, for A = {a, b, c, d} , k = 2 , and ≻2
i
= (a ≻ b) , then a dominates b (condition 

1 is satisfied), both a and b dominate c and d (condition 2 is satisfied), but c and d remain 
incomparable in >2

i
.

Now, the notions of pairwise comparison and majority graph are extended to top-k trun-
cated profiles in a straightforward way:

Definition 2  k-truncated majority graph Given a top-k profile R, NR(a, b) = #
{
i, a >k

i
b
}
 

is the number of voters in R for whom a dominates b. The top-k majority graph Mk(R) 
induced by R is the graph whose set of vertices is A and in which there is a directed edge 
from a to b if NR(a, b) > NR(b, a).

Definition 3  k-truncated weighted majority graph Given a k-truncated profile R, for 
any two candidates a, b, NR(a, b) = #

{
i, a >k

i
b
}
 is the number of voters in R for whom a 

dominates b. The k-truncated pairwise majority matrix (or k-truncated weighted majority 
graph) MWk(R) is the m × m matrix defined by MWk(R)(a, b) = NR(a, b) − NR(b, a).

Then, given a k-truncated profile, the truncated voting rules Copelandk , maximink and 
RPk are defined exactly as their standard counterparts Copeland, maximin and RP, starting 
from the k-truncated (weighted or unweighted) majority graph instead of the standard one. 
Note that fm−1 = f  , and (for all rules f we consider) f1 coincides with plurality.

Example 2  Let us consider this profile R with 15 voters and 4 candidates.

For all rules considered, the tie-breaking priority order is a ⊳ b ⊳ c ⊳ d : Figure 2 depicts 
the k-truncated majority graph for k = {1, 2, 3} ; the Copeland winner is shaded. Figure 3 
depicts the k-truncated weighted majority graph: for each pair of candidates (x, y) such that 
NR(x, y) ≥

n

2
 , the value of the edge is NR(x, y) ; the RPk winner for k ∈ {1, 2, 3} is shaded. 

3 votes a ≻ d ≻ c ≻ b 5 votes d ≻ c ≻ b ≻ a

3 votes a ≻ d ≻ b ≻ c 4 votes b ≻ c ≻ a ≻ d

Fig. 2   k-truncated majority graph 
and k-Copeland for k = {1, 2, 3}

Fig. 3   k-truncated weighted 
majority graph and k-RP for 
k = {1, 2, 3}
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The dashed edges are those that create cycles when running the algorithm that determines 
the RPk winner. The maximink winners for k = 1, 2, 3 coincide with the RPk-winners.

4.3 � STV
k

The STVk rule is defined by Ayadi et al. [1] as follows: For each 1 ≤ k ≤ m , just like STV, 
in each round, the candidate ranked first by the smallest number of voters is eliminated 
(breaking ties using ⊳ if necessary). If a vote has all its k candidates eliminated, it is said to 
be exhausted, and will be ignored in later rounds. This process is repeated until one candi-
date remains, who is the winner according to STVk.

Example 3  With the preference profile of Example 2, the winner of STVk for all k ∈ {1, 2, 3} 
is always a. For instance, for STV2 , c is eliminated first then b and the four votes ( b ≻ c ) are 
exhausted. d is eliminated next, the four votes ( d ≻ c ) are exhausted and a wins.

5 � Evaluation of the probability of selecting the true winner

We will consider two ways of measuring the quality of the top-k approximations. The first 
one (in this Section) is the probability that they output the true winner, that is, the winner 
of the original voting rule, under various distributions and for real-world data. The second 
one (in the next Section) will be the worst-case ratio between the scores of the winner of 
the original rule and the winner of the truncated approximation of the rule.

Note that Filmus and Oren [13] go along the first way while Bentert and Skowron [3] 
go along the second way. Our aim, in this Section, is to see the effect of various parameters 
of the probability of a top-k approximation fk of a voting rule f selecting the true winner 
(which we call the accuracy of fk ). We ask the following questions:

–	 How easy are the various rules to approximate by their top-k version?
–	 How does the accuracy of fk evolve with the number of voters n?
–	 How does the accuracy of fk evolve with the length of ballots k? Depending on the 

other parameters, what is the minimal length of the truncated ballots such that the accu-
racy is close enough to 1?

–	 How does the accuracy of fk evolve with the correlation between the voters?
–	 are these trends similar for all considered voting rules?

These questions may not always be easy to answer independently, since the effects of the 
various parameters may not always be independent.

5.1 � The experimental set‑up

To measure empirically the accuracy of various fk rules, we repeatedly apply these two 
steps until obtaining meaningful results: 
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1.	 Generate a complete profile P with n voters and m candidates. The generation method 
depends on whether we work with randomly generated data or real data. In the former 
case, we sample a profile from a given distribution. In the latter case, we select n votes 
uniformly at random from the data set.

2.	 Compare f(P) to fk(Pk) for each k = {1,… ,m − 2}.

Our experimental setup is similar to that of Filmus and Oren [13]. However, we consider 
many more rules, and beyond Impartial Culture we also consider correlated distributions, 
using the Mallows model and mixtures of Mallows models. In all experiments with a small 
number of voters i.e. n < 1000 we draw 10,000 random preference profiles while with a 
large number of voters2 we ran only 1000 profiles.

All figures show the fraction of profiles on which the top-k rule (for various values of k) 
selects the correct winner.

Figures 4, 5, 6, 7 and 8 all concern results with the Mallows model. More specifically: 

1.	 In Fig. 4 we vary the number of voters n ∈ {15, 500} , with a fixed value of � = 0.8 and 
m = 7.

(a) (b)

Fig. 4   Mallows, � = 0.8 , m = 7 , varying k and n 

(a) (b)

Fig. 5   Mallows, m = 7 , n = 15 , varying � and k 

2  Experiments in Fig. 10 (when n∗ > 100 ), Figs. 6 and 8.
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2.	 In Fig. 5 (resp. Fig. 6) we vary the value of dispersion parameter � ∈ {0.9, 1} , with a 
fixed value of m = 7 (resp. m = 20 ), and a fixed value of n = 15 (resp. n = 2000 ) (small 
for Fig. 5 , large for Fig. 6).

3.	 In Fig. 7 we vary n ∈ {100,… , 500} and � ∈ {0.8, 0.9, 1} , with a fixed m = 7 , and focus 
on k = 1 and k = 2.

4.	 In Fig. 8 we vary m ∈ {7, 10, 15, 20} and � ∈ {0.9, 1} with a fixed n = 1000.

(a) (b)

Fig. 6   Mallows, n = 2000 , m = 20 , varying � and k 

(a) (b) (c)

(d) (e) (f)

Fig. 7   Mallows, m = 7 , k = {1, 2} varying n and �
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8   Mallows, m ∈ {7, 10, 15, 20} , n = 1000 , � ∈ {0.9, 1} and varying k 
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Figure 9 considers correlated distributions constructed by mixtures of p Mallows mod-
els when p ∈ {1, 2, 3} with a fixed value of m = 7 and n = 500 . We now explain in detail 
how we generate profiles using mixtures of Mallows models. We take p = 3 (the case of 
p = 2 is similar). To generate a profile: 

1.	 We draw the reference rankings ( �1 , �2 , �3 ) independently, using the uniform distribution 
over all rankings of candidates for each.

2.	 We draw the dispersion parameters ( �1 , �2 , �3 ) independently, using the uniform dis-
tribution over [0, 1] for each.

3.	 For the mixing coefficients ( �1 , �2 , �3 ), we generate ( x1, x2, x3 ) ∈ [1,… , 100] and then 
we take, for each i, �i =

xi

x1+x2+x3
,

4.	 We draw each vote by first picking one of the three Mallows models
	   with probability �i ( i = 1, 2, 3 ), and then generating the ranking according to ( �i,�i).

Figure 10 uses a real data set from Preflib [25]: the 2002 election for Dublin North con-
stituency, for which m = 12 and n = 3662.3 We consider data with samples of n∗ voters 
among n ( n∗ < n ), starting by n∗ = 10 and increment n∗ in steps of 10 (resp. 50) when 
n∗ ≤ 100 (resp. n∗ > 100 ). In each experiment, 1000 (or 10000) random profiles are gener-
ated, each of them with n∗ voters; then we consider the top-k ballots obtained from these 
profiles, with k = {1, 2, 3} , and we compute the frequency with which the true winner is 
selected. Figure 10 shows results for Dublin with samples of n∗ ∈ {10,… , 1000} voters 
and k = {1, 2, 3} . We zoom in the x-axis when n∗ = {10, ..., 100} in order to see the behav-
ior of different approximations with small elections.

5.2 � Comparing the accuracy of various rules

We first aim to compare rules according to how easy they are to approximate by their top-
k versions. Filmus and Oren [13] evaluate empirically the efficiency of top-k voting to 
approximate the correct winner for the Borda, Harmonic and Copeland rules,4 they com-
pare the resistance of these rules to truncation under the IC model, with a fixed number 
of voters. They show that the best performance is obtained with Harmonic, followed by 
Borda, then Copeland (see Figure 2 in [13]). We go further by comparing more rules with 

3  The original data contains 43,942 ballots and only 3662 are complete.
4  For the Borda and Harmonic rules, they choose the average approximation, which they call FairCutoff.

(a) (b) (c)

Fig. 9   Mixture of p Mallows, m = 7 , n = 500 , varying k and p 
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different distributions over votes and with real data, and by studying the behavior of the 
k-truncated rules with small and large elections.

Recall that plurality needs only top-1 ballots. Therefore, we may expect that the closer a 
voting rule f to plurality, the easier it is to approximate f from top-k ballots. This is indeed the 
case when comparing positional scoring rules: the Harmonic rule, whose scoring vector is 
closer to that of plurality than the Borda rule, performs much better. This phenomenon occurs 
whatever the values of the other parameters; only its amplitude varies: the superiority of Har-
monic is more marked with a smaller number of voters (Figs. 4 (a) and 5 for synthetic data, 
and Fig. 10 for real data) and when correlation between votes is smaller (Fig. 7). For a fixed 
correlation between voters, it is more marked with a larger number of candidates (Fig. 8).

For k = 1 , our results can be viewed as answering the question: with which probability does 
the true winner with respect to the chosen rule coincide with the plurality winner? Our results 
suggest that with highly correlated votes and a sufficient number of voters, all 1-truncated 
rules tend to be very close to plurality: this can be observed on Fig. 7 (a) for highly correlated 
synthetic votes and Fig. 10 (a) for real data.

More surprisingly, for synthetic data, the accuracy of the other considered rules except 
Harmonic is typically very close to that of the Borda rule. This can be observed on Figs. 4, 6 

(a) (b)

(c)

Fig. 10   Dublin: varying k; n∗ = {10,… , 1500}



Autonomous Agents and Multi-Agent Systems           (2022) 36:24 	

1 3

Page 15 of 29     24 

(a), and 8. In some sense, this confirms the special status of the Borda rule within the class of 
positional scoring rules.

Let us focus on the set of rules {Borda, Copeland, maximin, RP, STV}. STV tends to per-
form slightly better than the other rules, especially when the number of voters is small (Figs. 4 
(a), 5, and 10) and, to some weaker extent, when there is little or no correlation between votes 
(Fig. 7). This can be explained by the fact that STV gives more importance to the top posi-
tions of the votes. Copeland, maximin and RP have very similar behaviours in all settings; this 
may be partly explained by the fact that both rules are based on the (weighted or unweighted) 
majority graph, but even with this explanation we find this finding quite surprising. Finally, 
when there is no correlation between votes (Figs. 6 (b) and 8), STV and Borda behave in a 
very similar way, and better than Copeland, maximin and RP. This confirms the findings of 
Filmus and Oren [13] (which concerned only Harmonic, Borda and Copeland).

Results on real data (Fig. 10) confirm most of these findings: Harmonic is better, followed 
by STV, and then Borda, Copeland, maximin and RP, all behaving similarly (a notable dif-
ference with synthetic data is that Borda performs particular bad for k = 1 ). The superiority 
of STV to Borda, maximin, RP and Copeland is more marked for small values of k and n. To 
assess whether these numbers are statistically significant, we use Friedman’s two-way analysis 
of variance by ranks (ANOVA by Ranks) [15], the non-parametric test that is commonly used 
for testing the differences between more than two related samples. (See Appendix for details.) 
We obtain that the null hypothesis, stating that all the rules behave similarly, is rejected at a 
high level of significance. Such a conclusion motivates the deep analysis carried out in the 
experiments.

For positional scoring rules, results with the average score are slightly better than those 
with the zero score (Fig. 4 (b) for the Borda rule), which is consistent with the results obtained 
by Filmus and Oren [13]. Moreover, such a behavior is noticeable in Table 1 where the aver-
age rank of Bordaav

k
 is lower than the one of Borda0

k
 for the experiments in Fig. 4 (a) (the aver-

age rank of Bordaav
k

 (resp. Borda0
k
 ) is 6 (resp. 6.8)). Therefore, from now on we will focus on 

the average-type approximations of Borda and Harmonic ( Bordaav
k

 and Harmonicav
k

 ) and most 
of the time we will ignore Borda0

k
 and Harmonic0

k
.

5.3 � The impact of the number of votes and the correlation between them

Comparing Fig. 4 (a) and (b), as well as looking at Figs. 7 and 10, leads us to the clear con-
clusion that the performance of top-k approximations increases dramatically with the num-
ber of voters, everything else being equal (the rule, the correlation between votes, the value 
of k), except when the correlation between votes is very weak (Fig. 7 (c) and (f)). This is 
especially true for small values of k. By comparing Figs. 4 and 5, as well as Fig. 6 (a) and 
(b), Fig. 7 (a), (b) and (c), and Fig. 7 (d), (e) and (f), we observe that the accuracy of top-k 
approximations increases with the correlation between votes, everything else being equal. 
These results are consistent with those obtained by Skowron et  al. [29] for multiwinner 
rules: elections with few voters and high dispersion appear to be the worst-case scenario 
for predicting the correct winner using top-truncated ballots. Beyond varying � in the Mal-
lows model, another way of varying the correlation between votes is to use mixtures of 
Mallows models. On Fig. 9 we observe that mixing more models leads to a decreased accu-
racy of top-k approximations (Note that increasing the number of models tend towards the 
impartial culture).
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5.4 � The elicitation‑efficiency trade‑off

Now we focus on the following question: depending on the voting rule used, the number 
of voters, the number of candidates, and the type of distribution over profiles, what is a 
reasonable value of k to choose? Choosing a low value usually comes with a larger risk or 
error, while choosing a high value induces too large a burden on the voters. A risk-averse 
strategy consists in identifying the smallest value of k so that none of our generated profiles 
lead to an error. Of course, this value depends on n, m, the distribution and the voting rule. 
As an example, let us focus on Mallows distributions, m ∈ {7, 10, 15, 20} , n = 1000.

–	 For � = 1 , on Fig. 8 we observe that the minimal value of k is always m − 1 , whatever 
the voting rule (in other words, we always find a generated profile for which we get an 
incorrect result if the profile is not complete).

–	 For � = 0.9 , Fig. 11 (a) depicts the results obtained on Fig. 8 (a), (b), (c), and (d) for 
Borda (and also STV, Copeland, RP and maximin, for which the obtained values are 
the same as for Borda; Harmonic is the only exception). We have added results for 
m ∈ {25, 30, 35, 40} to obtain a more interesting pattern. The x-axis corresponds to m 
and the y-axis to the value of k needed in order to get the correct winner. For instance, 
on Fig. 8 (c) we see that for m = 15 , k = 11 is needed. The value of k needed as a func-
tion of m follows a surprisingly linear pattern.5 (the red line in Fig. 11 (a)). The equa-
tion associated to this line is 17

20
m −

8

5
.

–	 For � = 0.8 , k = 2 is always sufficient whatever the value of m.
–	 For � = 0.7 , k = 1 is always sufficient, whatever m.

For Harmonic, we observe on Fig.  8 that k = 1 is always sufficient for � ≤ 0.8 and 
n = 1000 . For � = 0.9 (resp. � = 1 ), Fig.  11  (b) (resp. Fig.  11  (c)) depicts the results 
obtained on Fig.  8  (a), (b), (c), and (d) (resp. Fig.  8  (e), (f), (g), and (h)); the equation 
associated to the drawn line is 1

5
m +

14

5
 (resp. 35

39
m −

11

12
 ) which corresponds to the value of 

k needed.
With real data, on Fig. 10 we can observe an interesting trade-off between the number 

of voters n∗ and the amount of information to elicit form them for obtaining correct winner 

(a) (b) (c)

Fig. 11   Value of k needed in function of m for n = 1000

5  It consists of dividing a distribution of data – arranged in the increasing order of their abscissas – into two 
subgroups of equal size and then calculating a mean point for each of them (the black points in Fig. 11). We 
draw the line that joins these two points. This line passes through the centre of the scatter plot.
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selection with 100% accuracy: for all rules, k = 1 is sufficient to predict the correct winner 
if n∗ ≥ 1400 ; for k = 2 , n∗ ≥ 850 ; and for k = 3 , n∗ ≥ 750.6

6 � Measuring the approximation ratio

In the previous section, we measured empirically the quality of the approximation by the 
frequency with which it outputs the true winner of the original rule. Now, we follow the 
second path: we evaluate the quality of the approximations by computing the score ratio 
between the score of the true winner and the winner of the approximate rule. In Sect. 6.1 
we analyze theoretically the score distortion in the worst case. We complete our study by 
an empirical analysis of the average-case study and a study from real data sets in Sect. 6.2 
and Sect. 6.3, respectively. We will see that average-case and real-case experiments per-
form much better than the worst case.

6.1 � Worst case study

In order to measure the quality of approximate voting rules whose definition is based on 
score maximization, a classical method consists in computing the worst-case approxima-
tion ratio between the scores (with respect to the original rule) of the “true” winner and of 
the winner of the approximate rule. It is interesting to note that the performance of Bordaav

k
 

and Borda0
k
 is highly similar (it is very slightly better for Bordaav

k
).

Using worst-case score ratios is classical: they are defined for measuring the quality of 
approximate voting rules [7, 28], for defining the price of anarchy of a voting rule [6] or 
for measuring the distortion of a voting rule [4]. In this context, Bentert and Skowron [3] 
consider top-k approximations of positional scoring rules and the maximin rule, that take 
into account k-truncated ballots. They give tight bounds for all positional scoring rules and 
for maximin. We will discuss them in more detail in the subsections where we consider 
these rules.

Worst-case score ratios particularly make sense if the score of a candidate is meaning-
ful beyond its use for determining the winner. This is definitely the case for Borda, as the 
Borda count is often seen as a measure of social welfare (see [9]); this is also the case, to a 
slightly weaker extent, for other positional scoring rules (including Harmonic); the Cope-
land and maximin scores are arguably less meaningful as measures of social welfare. This 
worst-case score ratio is called the price of top-k truncation.

Definition 4  Let f be a voting rule defined as the maximization of a score S, and fk a top-k 
approximation of f. The price of top-k-truncation for f, fk , m, and k, is defined as:

R(f , fk,m, k) = max
P∈Pm

S(f (P))

S(fk(Pk))

6  Thus we obtain the correct result with 1400 voters specifying their top candidate (which needs 
1400 log 12 ≈ 3479 bits to be communicated), or 850 voters specifying their top-2 candidates (which 
needs 850 log(12 × 11) ≈ 4150 bits), or 750 voters specifying their top-3 candidates (which needs 
750 log(12 × 11 × 10) ≈ 5389 bits).
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6.1.1 � Positional scoring rules

Let f s be a positional scoring rule defined with scoring vector s. Assume the 
tie-breaking priority favors x1 . Let f s̄

k
 be a top-k approximation of f s , associ-

ated with vector s̄ = (s1,… , sk, s
∗) , with the same tie-breaking priority. Let 

s� = (s1 − s∗,… , sk − s∗, 0) = (s�
1
,… , s�

k
, 0) , i.e., s�

i
= si − s∗ for i = 1,… ,m . Obviously, 

f s̄
k
= f s

�

k
 . For instance, if f s̄ is the average-score approximation of the Borda rule, then 

s̄ = (m − 1,… ,m − k,
m−k−1

2
) and s� = (m − 1 −

m−k−1

2
,… ,m − k −

m−k−1

2
, 0).

Let S(x, P) be the score of x for P under f s and S�
k
(x,Pk) be the score of x for Pk under 

f s
′

k
 . From now on when we write scores we omit P and Pk , i.e., we write S(x) instead 

of S(x, P), S�
k
(x) instead of S�

k
(x,Pk) etc. In the rest of Sect.  6.1 we assume k ≥ 2 . Let 

x1 = f s
�

k
(Pk) and x2 = f s(P).

Let � (resp. � ) be the number of ballots in which x1 (resp. x2 ) appears in the top k 
positions. Also, let us write S(x) = S1→k(x) + Sk+1→m(x) , where S1→k(x) (resp. Sk+1→m(x) ) 
is the number of points that x gets from the top k (resp. bottom m − k ) positions of the 
ballots in P. Let us denote Σ� = s�

1
+…+ s�

k
.

Lemma 2  S�
k
(x1) ≥

n

m
Σ�

Proof  The total number of points given to candidates under f s
′

k
 is nΣ� , therefore 

S�
k
(x1) ≥

n

m
Σ�.

Lemma 3  � ≥
n

ms�
1

Σ�

Proof  S�
k
(x1) ≤ �s�

1
 , therefore, from Lemma 2,

	�  ◻

From Lemmas 2 and 3 we have:

Now we consider separately the cases s∗ = 0 and s∗ > 0 , since in the former case we get a 
tight bound that we do not get in the latter.

Lemma 4  If s∗ = 0 then R(f s, f s�
k
,m, k) ≤ 1 −

sk+1

s1
+

msk+1

s1+…+sk

Proof  Since s∗ = 0 we have s�
i
= si for all i and S�

k
= Sk ; therefore 

S1→k(x1) = S�
k
(x1) + �s∗ = Sk(x1) , and S(x1) ≥

n

m
(s1 +…+ sk) . As x2 appears in at least 

Sk(x2)

s1
 top-k ballots, we have � ≥

Sk(x2)

s1
 . Moreover we have 

S(x1) ≥ S1→k(x1) = Sk(x1) ≥ Sk(x2) = S1→k(x2) . Now,

� ≥
S�
k
(x1)

s�
1

≥
n

ms�
1

Σ�

S(x1) ≥
nΣ�

m
+ �s∗ ≥

nΣ�

m
+

nΣ�s∗

ms�
1

=
nΣ�

m

(
1 +

s∗

s�
1

)



Autonomous Agents and Multi-Agent Systems           (2022) 36:24 	

1 3

Page 19 of 29     24 

	�  ◻

Lemma 5  R(f s, f s�
k
,m, k) ≤ 1 +

ms�
1
sk+1

s1Σ
�

−
s∗

s1

Proof  We have the following inequalities:

Since S(x1) ≥
nΣ�

m
+ �s∗ , we get:

From Lemma 3, �s∗ ≥ nΣ�s∗

ms�
1

 , which gives us

	�  ◻

If we apply this bound to the special case s∗ = 0 , we get 
S(x2)

S(x1)
≤ 1 +

ms1sk+1

s1(s1+…+sk)
= 1 +

msk+1

s1+…+sk
 : comparing it to the bound 1 − sk+1

s1
+

msk+1

s1+…+sk
 of 

Lemma 4, we see that it is lower. This already enables us to say that the bound of 
Lemma 5 will not be tight (we will see that on the other hand, the bound of Lemma 4 is 
tight).

We now focus on the lower bound. We build the following pathological complete 
profile P such that:

–	 the winner for Pk (resp. P) is x1 (resp. x2).

S(x2) ≤ S1→k(x2) +
(
n −

Sk(x2)

s1

)
sk+1

= (1 −
sk+1

s1
)S1→k(x2) + nsk+1

≤ (1 −
sk+1

s1
)S(x1) + nsk+1

S(x2)

S(x1)
≤ 1 −

sk+1

s1
+ nsk+1

m

n(s1+…+sk)

= 1 −
sk+1

s1
+

msk+1

s1+…+sk

S(x2) ≤ S1→k(x2) + (n − �)sk+1
= S�

k
(x2) + �s∗ + (n − �)sk+1

≤ S�
k
(x1) + �s∗ + (n − �)sk+1 (because x1 = f s

�

k
(Pk))

= S1→k(x1) − �s∗ + �s∗ + (n − �)sk+1
≤ S(x1) − �(sk+1 − s∗) − �s∗ + nsk+1
≤ S(x1) − �s∗ + nsk+1 (because sk+1 ≥ s∗)

S(x2)

S(x1)
≤ 1 +

nsk+1−�s
∗

nΣ�

m
+�s∗

= 1 +
m(nsk+1−�s

∗)

nΣ�+m�s∗

S(x2)

S(x1)
≤ 1 +

m

nΣ�+
nΣ�s∗

s�
1

(
nsk+1 −

nΣ�s∗

ms�
1

)

= 1 +
m

Σ�+
Σ�s∗

s�
1

(
sk+1 −

Σ�s∗

ms�
1

)

= 1 +
ms�

1

s�
1
Σ�+Σ�s∗

ms�
1
sk+1−Σ

�s∗

ms�
1

= 1 +
ms�

1
sk+1−Σ

�s∗

(s�
1
+s∗)Σ�

= 1 +
ms�

1
sk+1−Σ

�s∗

s1Σ
�

= 1 +
ms�

1
sk+1

s1Σ
�

−
s∗

s1
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–	 In Pk , all candidates get the same number of points ( x1 wins thanks to tie-breaking), and x1 
and x2 get all their points from top-1 positions.

–	 In P, the score of x1 is minimized by ranking it last everywhere where it was not in the 
top k positions, and the score of x2 is maximized by ranking it in position k + 1 every-
where where it was not in the top k positions.

–	 Pk is symmetric in {x3,… , xm}.

Formally, Pk is defined as follows: 

1.	 For each ranked list L (resp. L′ ) of k − 1 (resp. k) candidates in {x3,… , xm} : � votes x1L 
and � votes x2L (resp. � votes L′ ). � and � will be fixed later.

2.	 � and � are chosen in such a way that all candidates get the same score S�
k
(.).

Now, P is obtained by completing Pk as follows: 

1.	 Each top-k vote x1L is completed into x1Lx2− . “−” means the remaining candidates are 
in an arbitrary order.

2.	 Each top-k vote x2L is completed into x2L − x1.
3.	 Each top-k vote L′ is completed into L�x2 − x1.

For instance, for m = 5 and k = 3 , P is as follows:

Let M =
(m−3)!

(m−k−1)!
 and Q =

(m−2)!

(m−k−1)!
.

Lemma 6 
and for i ≥ 3 , S�

k
(xi) = 2�(s�

2
+…+ s�

k
)M + �(m − k − 1)(s�

1
+…+ s�

k
)M

Proof  In Pk , x1 and x2 appear in top position in a number of votes equal to � times the num-
ber of different permutations (ordered lists) of (k − 1) candidates out of (m − 2) , i.e. 
�

(m−2)!

(m−k−1)!
 times. Thus S�

k
(x1) = S�

k
(x2) = �

(m−2)!

(m−k−1)!
s�
1
 . For similar reasons, for each i ≥ 3,

	�  ◻

As a consequence, all candidates have the same score in Pk if and only if

We fix � and � such that this equality holds. Thanks to the tie-breaking priority, the winner 
in Pk is x1 . In P, the winner is x2 and the scores of x1 and x2 are as follows:

� x1x3x4x2x5
� x1x3x5x2x4
� x1x4x3x2x5
� x1x4x5x2x3
� x1x5x3x2x4
� x1x5x4x2x3

� x2x3x4x5x1
� x2x3x5x4x1
� x2x4x3x5x1
� x2x4x5x3x1
� x2x5x3x4x1
� x2x5x4x3x1

� x3x4x5x2x1
� x3x5x4x2x1
� x4x3x5x2x1
� x4x5x3x2x1
� x5x3x4x2x1
� x5x4x3x2x1

S�
k
(x1) = S�

k
(x2) = �(m − 2)s�

1
M

S�
k
(xi) = 2�

(m−3)!

(m−k−1)!
(s�

2
+⋯ + s�

k
) + �

(m−3)!

(m−k−2)!
(s�

1
+⋯ + s�

k
).

�

�
=

(m − 2)s�
1
− 2(s�

2
+…+ s�

k
)

(m − k − 1)(s�
1
+…+ s�

k
)
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Lemma 7 
Proof  x1 appears at the top of (m−2)!

(m−k−1)!
� votes and at the bottom of all others, hence 

S(x1) = Q�s1 . x2 appears � (m−2)!

(m−k−1)!
 times top position, and in position (k + 1) in the remain-

ing votes, i.e., � (m−2)!

(m−k−1)!
+ �

(m−2)!

(m−k−2)!
 . Thus

	�  ◻

Lemma 8  R(f s, f s�
k
,m, k) ≥ 1 −

sk+1

s1
+

sk+1

s1

ms�
1

s�
1
+…+s�

k

Proof  From Lemma 7 we get S(x2)
S(x1)

≥ 1 +
sk+1

s1
+ (m − k − 1)

sk+1

s1

�

�
.

Finally, using the expression of �
�
 we get

From this we conclude:

	�  ◻

Putting Lemmas 5 and 8 together we get

Proposition 1 
There is a small gap between the two bounds. Now let us consider the case s∗ = 0 apart: 

putting Lemmas 4 and 8 together we get

Proposition 2  If s∗ = 0 then R(f s, f s�
k
,m, k) = 1 −

sk+1

s1
+

msk+1

s1+…+sk

So when s∗ = 0 we have a tight worst-case approximation ratio. Moreover, our (lower 
and upper) bound coincides with the optimal ratio given in [3] (Theorem 1).7 Since the 
ratio in [3] is shown to be the best possible ratio, this show that taking s∗ = 0 gives an opti-
mal top-k approximation of a positional scoring rule.8

In particular:

S(x1) = Q�s1
S(x2) = Q�s1 + Q�sk+1 + Q(m − k − 1)�sk+1

S(x2) = �
(m−2)!

(m−k−1)!
(s1 + sk+1) + �

(m−2)!

(m−k−2)!
sk+1

S(x2)

S(x1)
≥ 1 +

sk+1

s1
+ (m − k − 1)

sk+1

s1

(m−2)s�
1
−2(s�

2
+…+s�

k
)

(m−k−1)(s�
1
+…+s�

k
)

R(f s, f s
�

k
,m, k) ≥ 1 +

sk+1

s1
+

sk+1

s1

(m−2)s�
1
−2(s�

2
+…+s�

k
)

s�
1
+…+s�

k

= 1 +
sk+1

s1
+

sk+1

s1

(m−2)s�
1
+2s�

1
−2(s�

1
+…+s�

k
)

s�
1
+…+s�

k

= 1 +
sk+1

s1
+

sk+1

s1

(
ms�

1

s�
1
+…+s�

k

− 2
)

= 1 −
sk+1

s1
+

sk+1

s1

ms�
1

s�
1
+…+s�

k

1 −
sk+1

s1
+

sk+1

s1

ms�
1

s�
1
+…+s�

k

≤ R(f s, f s
�

k
,m, k) ≤ 1 −

s∗

s1
+

sk+1

s1

ms�
1

s�
1
+…+s�

k

7  Note that the ratios in our paper are the inverse of the ratios in [3]. That is, the inverse of the ratio given 
in Theorem 1 of [3] coincides with our ratio for s∗ = 0.
8  Interestingly, [3] give another optimal rule (thus with same worst-case ratio), which is much more com-
plex, and which is not a top-k PSR. Comparing the average ratio of both rules is left for further study.
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–	 For Borda0
k
 ( si = m − i, s∗ = 0) , the lower and upper bounds coincide and are equal to 

k

m−1
+

2m(m−k−1)

k(2m−k−1)
.

–	 for Bordaav
k

 ( si = m − i, s∗ =
m−k−1

2
 ), the lower bound is 1 − m−k−1

m−1
+

(m−k−1)(m+k−1)

k(m−1)
 and 

the upper bound is 1 + (m−k−1)(m+k−1)

k(m−1)
−

m−k−1

2(m−1)
.

–	 for Harmonic0
k
 ( si =

1

i
, s∗ = 0) , the lower and upper bounds are equal to 

k

k+1
+

m

(k+1)(1+
1

2
⋯+

1

k
)
.

Also, note that for k′-approval with k′ > k and s∗ = 0 , the (exact) worst-case ratio m
k
 does not 

depend on k′ . As a corollary, we get the following order of agnitudes when m grows:

–	 R(Borda,Borda0
k
,m, k) = �

(
m

k

)
.

–	 R(Borda,Bordaav
k
,m, k) = �

(
m

k

)
.

–	 R(Harmonic,Harmonic0
k
,m, k) = �

(
1 +

m

k log k

)
.

6.1.2 � maximin

We now consider the maximin rule, with tie-breaking priority x1 … xm , and maximink its the 
k-truncated version with the same tie-breaking priority. Let SMm(x2,P) and SMm(x1,Pk) be the 
maximin scores of x2 and x1 for P and Pk , respectively, with SMm(x2,P) = miny≠x2 NP(x2, y) 
and similarly for Pk . Let P be a profile, and let x1 = maximink(Pk) and x2 = maximin(P) . 
All candidates have the same maximin score in Pk , therefore, by tie-breaking priority, 
maximink(Pk) = x1.

Lemma 9  R(maximin,maximink,m, k) ≤ m − k + 1.

Proof  Because x1 = maximink(Pk) , we must have SMm(x1,Pk) ≥ 1 (other-
wise we would have SMm(x1,Pk) ≥ 0 , meaning that x1 does not belong to 
any top-k ballot, and in this case we cannot have x1 = maximink(Pk) ). Now, 
SMm(x2,P) ≤ SMm(x2,Pk) + (m − k) ≤ SMm(x1,Pk) + (m − k) , therefore,

	�  ◻

Lemma 10  R(maximin,maximink,m, k) ≥ m − k.

Proof  We consider the cyclic profile Cyc:

SMm(x2,P)

SMm(x1,P)
≤

SMm(x1,Pk)+(m−k)

SMm(x1,Pk)

≤ m − k + 1

Cyc P(m = 5, k = 2)

x1 x2 … m − 1 m

x2 x3 … m x1
x3 x4 … x1 x2
… … … …

m x1 … m − 2 m − 1

x1 x2 x3 x4 x5
x2 x3 x4 x5 x1
x3 x4 x2 x5 x1
x4 x5 x2 x3 x1
x5 x1 x2 x3 x4
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Now, let P be obtained from Cyc by the following operations for every vote in Cyc:

–	 If x1 is not in the top k positions in the vote, we move it to the last position (and move 
all candidates who were below x1 one position upward)

–	 If x2 is not in the top k positions in the vote, we move it to the (k + 1)th position (and 
move all candidates who were between position k + 1 and 2’s position one position 
downward).

For instance, for m = 5 , k = 2 , we get the profile P above.
maximin(P) = x2 , and the maximin scores of x1 and x2 in P are:

Hence SMm(x2,P)

SMm(x1,P)
= m − k . 	�  ◻

Proposition 3  m − k ≤ R(maximin,maximink,m, k) ≤ m − k + 1.

This worst-case ratio is quite bad, except if k is close to m. However, arguably, the maxi-
min score makes less sense per se (i.e., as a measure of social welfare) than a positional 
score such as the Borda count. The obtained lower bound matches the one given by Bentert 
and Skowron [3] (Section 4.3) which means that our top-k approximation of maximin is 
optimal.

6.1.3 � Copeland

Again, for the Copeland rule, the ratio makes less sense, because the Copeland score is less 
meaningful as a measure of social welfare.9 Still, for the sake of completeness we give the 
following result:

Proposition 4  R(Copeland,Copelandk,m, k) = ∞.

Proof  Let P be the following profile:

–	 Pk contains two votes x1x2 … xk , and one vote L for each ordered list of k candidates 
among m.

–	 P is obtained by completing Pk by adding x1 (resp. x2 ) in last position (resp. in position 
k + 1 ) when it is not in the top-k positions.

In Pk , the winner for Copelandk is x1 . In P, the Copeland winner is x2 . Now, with respect to 
P, the Copeland score of x1 (resp. x2 ) is 0 (resp. m − 1 ), hence the result. 	�  ◻

6.1.4 � Discussion

The price of truncation is very diverse across different voting rules. For positional scoring 
rules, especially Harmonic, it is reasonable, especially if k is not too small; for maximin 

SMm(x1,P) = 1 and SMm(x2,P) = m − k.

9  Moreover, there are several ways of defining the Copeland score, all leading to the same rule. However, 
this has no impact on the negative result below, as long as a Condorcet loser has score 0.
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and Copeland, it is much less good, but this has to be tempered by the fact that, as we said, 
the scores for these two rules make less sense as a measure of social welfare than positional 
scores.10 For instance, if k = m

4
 (which means that voters have to report one fourth of their 

rankings), the approximation ratios for Harmonic, Borda, maximin and Copeland are close 
to, respectively, 1 + 4

log(
m

4
)
 , 4, 3m

4
 and ∞.

Now, we may wonder whether these worst cases do occur frequently in practice or if 
they correspond to rare pathological profiles. The next two subsections show that the latter 
is the case.

6.2 � Average case evaluation

We present the evaluation of the approximation ratio for different truncated rules using 
data generated from Mallows and mixtures of Mallows. We will focus on small elections 
since the accuracy is good with large values of n. For each experiment, we draw 10000 
random profiles, with m = 7 , n = 15 , and let � and p vary. Figure 12 shows obtained results 
with Mallows with � ∈ {.7, .8, .9, 1} . Figure 13 reports on results with mixtures of p Mal-
lows with p = {1, 2, 3}.11

In the same context, Bentert and Skowron [3] measure empirically the approximation 
ratio for Borda (with the average-score version) and maximin. With a small number of vot-
ers, their results show that the quality of the approximation increases with the correlation 
between votes. Our results confirm and complement theirs. For large � and p, the approxi-
mation ratio increases except for the Harmonic rule, for which the approximation ratio is 
very close to 1 for all values of � and p (see Figs. 12 (d) and 13 (d)). In general, when the 
number of voters is small, a better quality approximation is obtained from mixtures of Mal-
lows than with Mallows models, which is consistent with the results in [3] (see Figs. 12 (c) 
and 13 (c)).

It is interesting to note that the performance of Bordaav
k

 and Borda0
k
 is highly similar (it 

is very slightly better for Bordaav
k

).
Our empirical results are much, much better than the worst case; however, the relative 

performance of rules is similar to what we obtained for the worst case: the best result is 
obtained by Harmonic, followed by Borda and finally maximin.

(a) (b) (c) (d)

Fig. 12   Mallows: Approximation ratio for n = 15 , m = 7 and varying �

10  As Ranked Pairs is not based on scores, it was not studied here. All others rules we considered, including 
Copeland and maximin, are defined via a score maximization.
11  For the method used for generating mixtures of Mallows model see the discussion page 11.
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6.3 � Real data sets

Again we consider 2002 Dublin North data ( m = 12, n = 3662 ) with samples of n∗ voters 
among n ( n∗ < n ), with n∗ = {15, 100}  (see Fig. 14). In each experiment 10000 random 
profiles are constructed with n∗ voters; then we consider the top-k ballots obtained from 
these profiles with k = {1,… ,m − 1} . Again, the results are very positive.

7 � Conclusion

In this paper we have considered k-truncated approximations of rules (Borda, Harmonic, 
Copeland, maximin and ranked pairs), taking top-k ballots as input. We have considered 
two measures of the quality of the approximation: the probability of selecting the same 
winner as the original rule, and the score ratio.

For the first measure, we have measured empirically the quality of the k-truncated rules 
by the frequency with which they output the true winner. Empirical results, based on ran-
domly generated profiles and on real data, demonstrate the practical viability and advan-
tages of our approximations. Our empirical study suggest that a very small k suffices.

For the second measure, we have studied the theoretical bounds of these approxima-
tions, for rules whose definition is based on score maximization (Borda, Harmonic, Cope-
land and maximin), by identifying the order of the worst-case ratio. Also, we have tested 

(a) (b) (c) (d)

Fig. 13   Mixtures of p Mallows: Approximation ratio for n = 15 , m = 7 and p ∈ {1, 2, 3}

(a) (b)

Fig. 14   Approximation ratio with Dublin North data set
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the ability of these truncated rules to predict the standard voting rules based on both ran-
domly generated profiles and real data. While the theoretical bounds are, at best, moder-
ately encouraging, our experiments show that in practice the approximation ratio is much 
better than in the worst case: our results suggest that a very small value of k works very 
well in practice.

This paper focuses on the approximation of voting rules by top-k ballots and evaluates 
them only in that respect. This is only one criteria out of many, and we certainly do not 
want the reader to believe that rules that are easy to approximate from top-k ballots are bet-
ter that those that are not.

Many issues remain open. Especially, it would be interesting to consider top-k approxi-
mations as voting rules on their own, and to study their normative properties.

Appendix: ANOVA by Ranks

The Friedman test [15] known as the Friedman two-way ANalysis Of VAriances by ranks 
(ANOVA by Ranks) is a non-parametric statistical test. The objective of this test is to deter-
mine if we may conclude from a sample of results that there is difference among treatment 
effects:

where

–	 b is number of data sets (blocks, rows);
–	 v is number of treatments (voting rules, columns);
–	 r

j

i
 is the rank of the jth of v rules on the ith of b data sets;

–	 Rj =
1

b

∑
i=1..b r

j

i

The first step in calculating the ANOVA’s test is to convert the original results to ranks. 
Thus, it ranks the treatments for each problem separately, the best performing treatment 
should have rank 1, the second best rank 2, etc. In case of ties, average ranks are computed.

Under the null hypothesis ( H0 ) — which states that all the treatments behave similarly 
and thus their ranks Rj for j = {1,… , v} should be equal — the Friedman statistic is dis-
tributed according to �2

F
 with b − 1 degrees of freedom when b and v are big enough (as a 

rule of a thumb, b > 10 and v > 5).
Iman and Davenport [17] showed that Friedman’s �2

F
 presents a conservative behavior 

and proposed a better statistic which is distributed according to the F-distribution with two 
degrees of freedom v − 1 and (v − 1) × (b − 1):

In order to apply the ANOVA’s test to our specific case, let us consider the experimental 
results illustrated in Fig. 4 (a) when m = 7, n = 15 and � = 0.8 presented in Table 1.

Our goal is to compare statistically the behavior of voting rules (columns) for different 
values of k ∈ {1,… , 5} (rows). In this example, b = 5 and v = 7 . We compute �2

F
 and FF 

following Eqs. 1 and 2, respectively as follows:

(1)�2
F
=

12b

v(v + 1)

∑

j=1..v

R2
j
−

v × (v + 1)2

4

(2)FF =
(b − 1) × �2

F

b × (v − 1) − �2
F
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The Friedman test proves whether the measured average ranks are significantly different 
from the mean rank Rj = (3.8 + 3.6 + 6 + 6.8 + 4.8 + 1 + 2)∕7 = 4 where j ∈ {1,… , 7} 
expected under the null hypothesis.

FF is distributed according to the F distribution with DF1 = 7 − 1 = 6 and 
DF2 = (7 − 1) × (5 − 1) = 24 degrees of freedom. In this example, the null hypothesis is 
rejected because:

�2

F
=

12 × 5

7 × 8
[(3.82 + 3.6

2 + +62 + 6.8
2 + 4.8

2 + 1
2 + 2

2) −
7 × (8)2

4
] = 27.514

F
F
=

4 × 27.514

5 × 6 − 27.514
= 44.27

Table 1   ANOVA’s test for experiments in Fig. 4 (a)

Copeland Maximin Borda-av Borda-0 RP Harmonic STV

k = 1 0.611 (4) 0.6107 (5) 0.5818 (6) 0.5811 (7) 0.6137 (3) 0.7772 (1) 0.6521 (2)
k = 2 0.7405 (4) 0.742 (3) 0.7228 (7) 0.7292 (6) 0.7384 (5) 0.9062 (1) 0.7748 (2)
k = 3 0.8297 (4) 0.832 (3) 0.8231 (6) 0.8184 (7) 0.8233 (5) 0.955 (1) 0.8699 (2)
k = 4 0.8992 (4) 0.9008 (3) 0.8972 (5) 0.8876 (7) 0.8947 (6) 0.9805 (1) 0.9369 (2)
k = 5 0.9629 (3) 0.9601 (4) 0.9525 (6) 0.9432 (7) 0.9592 (5) 0.993 (1) 0.9826 (2)
Avg. Rank 3.8 3.6 6 6.8 4.8 1 2

Table 2   Statistical test for different experiments

Figure �2

F
F
F

DF1 DF2 Critical value p-value H
0

Figure 4 (a) 27.514 44.2758 6 24 2.50818 8.12E-12 REJECT
Figure 4 (b) 20,20714 8,25382 6 24 2.50818 6,51E-05 REJECT
Figure 5 (a) 19.85714 15.44444 5 20 2.71089 2.82E-06 REJECT
Figure 5 (b) 20.2 16.83333 5 20 2.71089 1.45E-06 REJECT
Figure 6 (a) 66.98413 49.47586 5 85 2.321812 9.58E-24 REJECT
Figure 6 (b) 79.01587 122.2919 5 85 2.321812 2.71E-37 REJECT
Figure 8 (a) 17.6 9.513514 5 20 2.71089 9.16E-05 REJECT
Figure 8 (b) 27.08929 14.68741 5 35 2.485143 9.00E-08 REJECT
Figure 8 (c) 48.01099 33.91203 5 60 2.36827 2.79E-16 REJECT
Figure 8 (d) 67.07143 49.72897 5 85 2.321812 8.17E-24 REJECT
Figure 8 (e) 22.25714 32.45833 5 20 2.71089 6.12E-09 REJECT
Figure 8 (f) 35.21429 51.50746 5 35 2.485143 3.72E-15 REJECT
Figure 8 (g) 55.23077 67.84252 5 60 2.36827 2.11E-23 REJECT
Figure 8 (h) 77.56349 106.0249 5 85 2.321812 5.16E-35 REJECT
Figure 9 (a) 19.42857 13.94872 5 20 2.71089 6.11E-06 REJECT
Figure 9 (b) 23.2 51.55556 5 20 2.71089 9.60E-11 REJECT
Figure 9 (c) 23.17143 50.6875 5 20 2.71089 1.12E-10 REJECT
Figure 10 (a) 179.6657 43.58403 5 995 2.223098 1.05E-40 REJECT
Figure 10 (b) 182.4293 44.40402 5 995 2.223098 2.00E-41 REJECT
Figure 10 (c) 143.9407 33.46054 5 995 2.223098 1.23E-31 REJECT
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–	 The critical value (from the table of critical values for the F distribution for use with 
ANOVA) with 0.05 significance level and (6, 24) degrees of freedom, is 2.508, so the 
null hypothesis is rejected at a high level of significance since FF = 44.27 >> 2.508.

–	 The p-value computed by using F(6,  24) distribution is 8.12658E-12, so the null 
hypothesis is rejected at a high level of significance since 8.12658E-12 << 0.05

From the obtained results, we can say that the considered voting rules have a very different 
behavior.

Table 2 summarizes the results of Friedman test and Iman–Davenport extension for dif-
ferent figures considered in this paper. Results suggest that the null hypothesis is always 
rejected for all settings which means that the k-truncated voting rules behave differently.
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